Induction of the Glutathione Antioxidant Response/Glutathione Redox Cycling by Nutraceuticals: Mechanism of Protection against Oxidant-induced Cell Death

نویسندگان

  • Pou Kuan Leong
  • Kam Ming Ko
چکیده

The “Mitochondrial Free Radical Theory of Aging” (MFRTA) hypothesizes that reactive oxygen species (ROS) arising from aged and/or defective mitochondria are associated with the pathogenesis of various age-related diseases. The glutathione antioxidant response, in particular glutathione redox cycling, is a critical mechanism for protection against ROS-induced cell death. Over the past few decades, a number of phytochemicals [such as curcumin, epigallocatechin gallate (EGCG), resveratrol and schisandrin B (Sch B)], which all possess the ability to elicit a nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated antioxidant response, have been identified. Despite the fact that these phytochemicals can produce cyto/tissue protection against oxidant-induced injury in various types of cultured cells/rodent tissues, the underlying protective mechanism can vary. While curcumin, EGCG and resveratrol likely confer cytoprotection via the activation of glutathione S-transferase and glutathione peroxidase, Sch B is thought to produce its protective effect via the induction of glutathione redox cycling, which is of primary importance in preventing cell death. Recent studies have suggested that the electrophilicity of phytochemicals and/or their metabolites determines their ability to activate Nrf2 by the oxidative modification of a cysteine residue on the repressor of Nrf2 [namely, Kelch-Like ECH-Associated Protein 1 (Keap1)]. The differences in structures of phytochemicals could produce differential accessibility to this critical cysteine residue of Nrf2/Keap1, presumably leading to varying degrees of Nrf2 activation and antioxidant gene expression. In the hope of developing safe and effective interventions for protection against oxidant-induced injuries, further studies are required to define the protective mechanism(s), particularly the array of antioxidant enzyme expressions, induced by the various phytochemicals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ursolic Acid-enriched herba cynomorii extract induces mitochondrial uncoupling and glutathione redox cycling through mitochondrial reactive oxygen species generation: protection against menadione cytotoxicity in h9c2 cells.

Herba Cynomorii (Cynomorium songaricum Rupr., Cynomoriaceae) is one of the most commonly used 'Yang-invigorating' tonic herbs in Traditional Chinese Medicine (TCM). An earlier study in our laboratory has demonstrated that HCY2, an ursolic acid-enriched fraction derived from Herba Cynomorii, increased mitochondrial ATP generation capacity (ATP-GC) and induced mitochondrial uncoupling as well as ...

متن کامل

Sulphur-containing non enzymatic antioxidants: therapeutic tools against cancer.

The prevention of oxidation is an essential process in all cells, as decreased antioxidant protection may lead to cytotoxicity, mutagenicity and carcinogenicity. The mechanisms by which oxidative stress contributes to carcinogenesis include modulation of gene expression and induction of genetic modifications. Cellular methylation and antioxidant metabolism are linked by the transsulfuration pat...

متن کامل

β-sitosterol protects against carbon tetrachloride hepatotoxicity but not gentamicin nephrotoxicity in rats via the induction of mitochondrial glutathione redox cycling.

Previous findings have demonstrated that β-sitosterol (BSS), an active component of Cistanches Herba, protected against oxidant injury in H9c2 cardiomyocytes and in rat hearts by enhancing mitochondrial glutathione redox cycling, possibly through the intermediacy of mitochondrial reactive oxygen species production. We therefore hypothesized that BSS pretreatment can also confer tissue protectio...

متن کامل

Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2.

The transcription factor Nrf2 (nuclear factor E2-related factor 2) regulates the expression of antioxidant phase II genes and contributes to preserve redox homeostasis and cell viability in response to oxidant insults. Nrf2 should be coordinated with the canonical cell survival pathway represented by phosphatidylinositol 3-kinase (PI3K) and the Ser/Thr kinase Akt but so far the mechanistic conn...

متن کامل

The radical induced cell death protein 1 (RCD1) supports transcriptional activation of genes for chloroplast antioxidant enzymes

The rimb1 (redox imbalanced 1) mutation was mapped to the RCD1 locus (radical-induced cell death 1; At1g32230) demonstrating that a major factor involved in redox-regulation genes for chloroplast antioxidant enzymes and protection against photooxidative stress, RIMB1, is identical to the regulator of disease response reactions and cell death, RCD1. Discovering this link let to our investigation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016